skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shaw, Sidney L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ovoid-shaped bacteria, such asStreptococcus pneumoniae(pneumococcus), have two spatially separated peptidoglycan (PG) synthase nanomachines that locate zonally to the midcell of dividing cells. The septal PG synthase bPBP2x:FtsW closes the septum of dividing pneumococcal cells, whereas the elongasome located on the outer edge of the septal annulus synthesizes peripheral PG outward. We showed previously by sm-TIRFm that the septal PG synthase moves circumferentially at midcell, driven by PG synthesis and not by FtsZ treadmilling. The pneumococcal elongasome consists of the PG synthase bPBP2b:RodA, regulators MreC, MreD, and RodZ, but not MreB, and genetically associated proteins Class A aPBP1a and muramidase MpgA. Given its zonal location separate from FtsZ, it was of considerable interest to determine the dynamics of proteins in the pneumococcal elongasome. We found that bPBP2b, RodA, and MreC move circumferentially with the same velocities and durations at midcell, driven by PG synthesis. However, outside of the midcell zone, the majority of these elongasome proteins move diffusively over the entire surface of cells. Depletion of MreC resulted in loss of circumferential movement of bPBP2b, and bPBP2b and RodA require each other for localization and circumferential movement. Notably, a fraction of aPBP1a molecules also moved circumferentially at midcell with velocities similar to those of components of the core elongasome, but for shorter durations. Other aPBP1a molecules were static at midcell or diffusing over cell bodies. Last, MpgA displayed nonprocessive, subdiffusive motion that was largely confined to the midcell region and less frequently detected over the cell body. 
    more » « less
  2. Microtubules are essential components of eukaryotic cells. Myriad proteins associate with microtubules to facilitate the organization and operation of microtubule arrays. Various Microtubule Associated Proteins (MAPs) assist the assembly and function of mitotic spindles and interphase arrays. Nine MAP65 genes exist in the genome of the acentrosomal model plant, Arabidopsis thaliana, and the function of majority of these proteins is unclear. To address this knowledge gap, we demonstrate the localization of A. thaliana MAP65-6 and MAP65-7 fusion proteins expressed from native promoters in interphase cells of developing A. thaliana seedlings. Analyses of these fusion proteins co-expressed with alpha-tubulin 6 reporters indicate that MAP65-6 and MAP65-7 bind a subset of interphase microtubules. Co-expression of GFP:MAP65-6 with mCherry:MAP65-2 from native promoters in A. thaliana showed overlapping localization patterns on interphase microtubule bundles. Collectively, these data suggested that MAP65-2, -6, and -7 bind cortical microtubule bundles in plant interphase microtubule arrays. 
    more » « less
  3. Wignall, Sarah (Ed.)
    Tight regulation of microtubule (MT) dynamics is necessary for proper spindle assembly and chromosome segregation. The MT destabilizing Kinesin-8, Kif18B, controls astral MT dynamics and spindle positioning. Kif18B interacts with importin α/β as well as with the plus-tip tracking protein EB1, but how these associations modulate Kif18B is not known. We mapped the key binding sites on Kif18B, made residue-specific mutations, and assessed their impact on Kif18B function. Blocking EB1 interaction disrupted Kif18B MT plus-end accumulation and inhibited its ability to control MT length on monopolar spindles in cells. Blocking importin α/β interaction disrupted Kif18B localization without affecting aster size. In vitro, importin α/β increased Kif18B MT association by increasing the on-rate and decreasing the off-rate from MTs, which stimulated MT destabilization. In contrast, EB1 promoted MT destabilization without increasing lattice binding in vitro, which suggests that EB1 and importin α/β have distinct roles in the regulation of Kif18B-mediated MT destabilization. We propose that importin α/β spatially modulate Kif18B association with MTs to facilitate its MT destabilization activity. Our results suggest that Ran regulation is important not only to control molecular motor function near chromatin but also to provide a spatial control mechanism to modulate MT binding of nuclear localization signal–containing spindle assembly factors. 
    more » « less
  4. Hinchcliffe, Edward (Ed.)
  5. Bacterial cell division and peptidoglycan (PG) synthesis are orchestrated by the coordinated dynamic movement of essential protein complexes. Recent studies show that bidirectional treadmilling of FtsZ filaments/bundles is tightly coupled to and limiting for both septal PG synthesis and septum closure in some bacteria, but not in others. Here we report the dynamics of FtsZ movement leading to septal and equatorial ring formation in the ovoid-shaped pathogen,Streptococcus pneumoniae. Conventional and single-molecule total internal reflection fluorescence microscopy (TIRFm) showed that nascent rings of FtsZ and its anchoring and stabilizing proteins FtsA and EzrA move out from mature septal rings coincident with MapZ rings early in cell division. This mode of continuous nascent ring movement contrasts with a failsafe streaming mechanism of FtsZ/FtsA/EzrA observed in a ΔmapZmutant and anotherStreptococcusspecies. This analysis also provides several parameters of FtsZ treadmilling in nascent and mature rings, including treadmilling velocity in wild-type cells andftsZ(GTPase) mutants, lifetimes of FtsZ subunits in filaments and of entire FtsZ filaments/bundles, and the processivity length of treadmilling of FtsZ filament/bundles. In addition, we delineated the motion of the septal PBP2x transpeptidase and its FtsW glycosyl transferase-binding partner relative to FtsZ treadmilling inS. pneumoniaecells. Five lines of evidence support the conclusion that movement of the bPBP2x:FtsW complex in septa depends on PG synthesis and not on FtsZ treadmilling. Together, these results support a model in which FtsZ dynamics and associations organize and distribute septal PG synthesis, but do not control its rate inS. pneumoniae. 
    more » « less